编辑、整理:暖手
1.JCB:上海生科院在视网膜干细胞胚胎起源研究中取得进展doi:10./jcb.
5月2日,《细胞生物学杂志》(JournalofCellBiology)在线发表了题为《视网膜成体干细胞胚胎起源双潜能细胞》的研究论文,该研究由中国科学院上海生命科学研究院神经科学研究所、脑科学与智能技术卓越创新中心何杰研究组完成。该研究采用基于彩虹鱼克隆分析,在单细胞水平上揭示了视网膜干细胞在视网膜睫状边缘区的准确定位;同时在边缘区中发现一类目前尚未报道的静息态细胞。此外,此研究采用原位细胞谱系追踪,阐述了视网膜干细胞胚胎发育的精确细胞谱系,从而揭示视网膜干细胞起源于视泡(opticvesicle)中间层上皮细胞中的一群双潜能细胞。此项工作发现了视网膜干细胞发育的细胞谱系基础,为进一步揭示视网膜干细胞发育的分子机制,最终实现视网膜干细胞微环境的体外重建提供重要的实验依据。研究团队以斑马鱼为模式动物,采用基于彩虹鱼的克隆分析,将视网膜干细胞精确定位于视网膜睫状边缘区最外周第二层或第三层细胞。相对于视网膜睫状边缘区中其他视网膜前体细胞,视网膜干细胞的细胞周期比较长。此外,研究团队还发现视网膜睫状边缘区最外周第一层细胞是一类完全处于静息状态的新细胞类型。RNA原位杂交实验表明,它们既不表达视网膜干细胞的分子标记,也不表达或者仅微弱表达视网膜色素细胞相关的分子标记。关于这类新的细胞对于视网膜干细胞的维持作用还需要进一步研究。在准确定位视网膜干细胞的基础上,研究人员进一步寻找视网膜干细胞的胚胎起源。Kaede是一种光转化蛋白,在nm激光照射下,能够由绿色变为红色。将核定位光转化蛋白nls-kaede的mRNA注射到野生型斑马鱼的胚胎中。在视网膜发育的视泡阶段,对表达Kaede蛋白的视泡中间上皮细胞进行单细胞光转化,通过分析由单个上皮细胞衍生的克隆,研究人员发现:视网膜干细胞只能由视泡中间上皮细胞中一群双潜能细胞产生;这群双潜能细胞产生视网膜干细胞的同时产生视网膜色素细胞,是一群细胞周期比较短的细胞。RNA原位杂交实验表明,这群双潜能细胞既表达视网膜干细胞的分子标记,也表达视网膜色素细胞的标记。而视网膜视泡中间上皮细胞中的其他细胞则只能产生视网膜色素细胞或者视网膜前体细胞。在准确定位视网膜干细胞的基础上,研究人员进一步寻找视网膜干细胞的胚胎起源。Kaede是一种光转化蛋白,在nm激光照射下,能够由绿色变为红色。将核定位光转化蛋白nls-kaede的mRNA注射到野生型斑马鱼的胚胎中。在视网膜发育的视泡阶段,对表达Kaede蛋白的视泡中间上皮细胞进行单细胞光转化,通过分析由单个上皮细胞衍生的克隆,研究人员发现:视网膜干细胞只能由视泡中间上皮细胞中一群双潜能细胞产生;这群双潜能细胞产生视网膜干细胞的同时产生视网膜色素细胞,是一群细胞周期比较短的细胞。RNA原位杂交实验表明,这群双潜能细胞既表达视网膜干细胞的分子标记,也表达视网膜色素细胞的标记。而视网膜视泡中间上皮细胞中的其他细胞则只能产生视网膜色素细胞或者视网膜前体细胞。2.Cell子刊:利用多能性干细胞制造三维微型视网膜doi:10./j.stemcr..03.
近期,干细胞科学家们给公众分享了制造人视网膜---眼部中对光线敏感的部分---的配方。如今,在一项新的研究中,德国科学家们发现了另一种利用小鼠或人干细胞高效地制造三维视网膜类器官(retinaorganoids)的方法。他们制造的“微型视网膜(mini-retina)”为研究视网膜生长、损伤和修复提供新的视角。相关研究结果于年3月31日在线发表在StemCellReports期刊上,论文标题为“Retinalorganoidsfrompluripotentstemcellsefficientlyrecapitulateretinogenesis”。Karl和同事们在体内比较了源自小鼠多能性干细胞的视网膜类器官、源自人多能性干细胞的视网膜类器官和小鼠视网膜,证实了这种新的视网膜类器官制造方法的可靠性。Karl说,“组织异质性是类器官系统中的一个主要挑战。这里,我们的研究提供新的认识,这将有助开发出基于类器官的特定模型,从而特别可靠地研究视网膜疾病机制。”Karl实验室还对这种微型视网膜制造方法进行改变,涉及在眼部发育早期阶段将利用干细胞制造出的视网膜类器官切割成三个块。每块看起来类似于小半月,最终发育成在视网膜中发现的全套细胞,因而相比于之前的方法,视网膜类器官产生增加了高达4倍。这种三等分也促进存活下来的类器官块长大到类似于未切割时的类器官大小。这些微型视网膜在盘碟中自由游动,这是因为它们不再附着到盘碟表面上,从而更好地反映发育期间的视网膜组织结构。3.SciRep:新技术将干细胞变为视网膜神经节细胞doi:10./srep
来自约翰霍普金斯大学的研究人员近日开发了一种新型技术,其可以将人类干细胞有效转化成为视网膜神经节细胞,这种干细胞位于视网膜中,其可以将眼睛中的视觉信号传送至大脑,而这类干细胞的死亡或异常会引发某些疾病患者的视觉丧失,比如青光眼或多发性硬化症患者,相关研究发表于杂志ScientificReports上。医学博士DonaldZack指出,我们的工作不仅可以帮助更好地理解视神经的生物学机制,同时还可以促进基于细胞的人类模型被用来寻找阻断或治疗致盲状况的药物,最终或将帮助科学家们开发细胞移植疗法来帮助恢复青光眼或多发性硬化症患者的视力缺失。文章中研究者对人类胚胎干细胞系进行遗传修饰,使其转化成为视网膜神经节细胞,随后利用新的细胞系就可以开发新型的分化方法,并对所生成的细胞进行特性分析。利用CRISPR-Cas9基因编辑技术,研究者将荧光蛋白基因插入到干细胞的DNA中,红色的荧光蛋白仅会在名为BRN3B的基因进行表达时才会表达,BRN3B在视网膜神经节细胞中是表达的,因此一旦细胞分化成为视网膜神经节细胞,其就会在显微镜下呈现出红色表现。随后研究者利用一种名为荧光活化细胞分选系统将新分化形成的视网膜神经节细胞从多种不同的细胞混合物中分离出来,并使其成为高纯度的细胞群体供研究所用,这些细胞也将表现出较好的生物学和物理学特性。研究者还发现,在研究第一天添加一种名为福司柯林的天然植物化合物就可以帮助改善细胞转变为视网膜神经节细胞的效率,而这种广泛用于减肥和增肌的化合物或许并不是足够安全,且有效帮助预防失明。研究者ValentinSluch说道,在培养进行30天时,我们在显微镜下观察到了明显的荧光细胞聚集现象,在接下来的实验中,我们希望利用CRISPR技术将帮助我们寻找更多对神经节细胞生存和功能非常重要的基因,我们希望这些细胞最终可以帮助开发治疗青光眼和视神经疾病的新型疗法。4.NatCommun:干细胞:从人类干细胞到感光视网膜doi:10./n北京最专业看白癜风医院北京治白癜风做好的医院